Accelerate PVC with Fluid
Scenario: training ResNet50​
- Device: V100 x8
- NFS Server:38037492dc-pol25.cn-shanghai.nas.aliyuncs.com
Configuration​
Hardware Configuration​
Cluster | Alibaba Cloud Kubernetes. v1.16.9-aliyun.1 |
---|---|
ECS Instance | ECS specifications:ecs.gn6v-c10g1.20xlarge CPU:82 cores |
Distributed Storage | NAS |
Software Configuration​
Software version: 0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6
Prerequisites​
Data Preparation​
- Download
$ wget http://imagenet-tar.oss-cn-shanghai.aliyuncs.com/imagenet.tar.gz
- Unpack
$ tar -I pigz -xvf imagenet.tar.gz
NFS dawnbench​
Deploy Dataset​
-
Export Dataset on Your NFS Server
-
Create Volume using Kubernetes
$ cat <<EOF > nfs.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: nfs-imagenet
spec:
capacity:
storage: 150Gi
volumeMode: Filesystem
accessModes:
- ReadOnlyMany
persistentVolumeReclaimPolicy: Retain
storageClassName: nfs
mountOptions:
- vers=3
- nolock
- proto=tcp
- rsize=1048576
- wsize=1048576
- hard
- timeo=600
- retrans=2
- noresvport
- nfsvers=4.1
nfs:
path: <YOUR_PATH_TO_DATASET>
server: <YOUR_NFS_SERVER>
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: nfs-imagenet
spec:
accessModes:
- ReadOnlyMany
resources:
requests:
storage: 150Gi
storageClassName: nfs
EOF
NOTE:
Please replace
YOUR_PATH_TO_DATASET
andYOUR_NFS_SERVER
with your own nfs server address and path to dataset.
$ kubectl create -f nfs.yaml
- Check Volume
$ kubectl get pv,pvc
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
persistentvolume/nfs-imagenet 150Gi ROX Retain Bound default/nfs-imagenet nfs 45s
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/nfs-imagenet Bound nfs-imagenet 150Gi ROX nfs 45s
Dawnbench​
Single machine with eight GPUs​
arena submit mpi \
--name horovod-resnet50-v2-1x8-nfs \
--gpus=8 \
--workers=1 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data nfs-imagenet:/data \
-e DATA_DIR=/data/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 1 8
Four machines with eight GPUs​
arena submit mpi \
--name horovod-resnet50-v2-4x8-nfs \
--gpus=8 \
--workers=4 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data nfs-imagenet:/data \
-e DATA_DIR=/data/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 4 8
NOTE:
If you find that nfs volume cannot be deleted, this is because Arena will leave a launcher pod after training finished, and Kubernetes still thinks that volume is in using.Just execute following command to force deleting volume:
$ kubectl patch pvc nfs-imagenet -p '{"metadata":{"finalizers": []}}' --type=merge
Accelerate PVC with Fluid​
Deploy Dataset​
- Follow Previous Steps to Create NFS Volume
- Deploy Fluid to Accelerate NFS Volume
$ cat <<EOF > dataset.yaml
apiVersion: data.fluid.io/v1alpha1
kind: Dataset
metadata:
name: fluid-imagenet
spec:
mounts:
- mountPoint: pvc://nfs-imagenet
name: nfs-imagenet
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: aliyun.accelerator/nvidia_name
operator: In
values:
- Tesla-V100-SXM2-16GB
---
apiVersion: data.fluid.io/v1alpha1
kind: AlluxioRuntime
metadata:
name: fluid-imagenet
spec:
replicas: 4
data:
replicas: 1
tieredstore:
levels:
- mediumtype: SSD
path: /var/lib/docker/alluxio
quota: 150Gi
high: "0.99"
low: "0.8"
EOF
NOTE:
- Please keep
spec.replicas
consistent with the number of machines you are going to use for machine learning。nodeSelectorTerms
is used to restrict scheduling on machines with V100 GPU only.
$ kubectl create -f dataset.yaml
- Check Volume
$ kubectl get pv,pvc
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
persistentvolume/fluid-imagenet 100Gi RWX Retain Bound default/fluid-imagenet 1s
persistentvolume/nfs-imagenet 150Gi ROX Retain Bound default/nfs-imagenet nfs 16m
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/fluid-imagenet Bound fluid-imagenet 100Gi RWX 0s
persistentvolumeclaim/nfs-imagenet Bound nfs-imagenet 150Gi ROX nfs 16m
Dawnbench​
Single machine with eight GPUs​
arena submit mpi \
--name horovod-resnet50-v2-1x8-fluid \
--gpus=8 \
--workers=1 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data fluid-imagenet:/data \
-e DATA_DIR=/data/nfs-imagenet/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 1 8
Four machines with eight GPUs​
arena submit mpi \
--name horovod-resnet50-v2-4x8-fluid \
--gpus=8 \
--workers=4 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data fluid-imagenet:/data \
-e DATA_DIR=/data/nfs-imagenet/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 4 8
Experiment Results​
horovod-1x8​
nfs | fluid (cold) | fluid (warm) | |
---|---|---|---|
Training time | 3h49m10s | 3h50m40s | 3h34m15s |
Speed at the 1000 step(images/second) | 2400.8 | 2378.4 | 9327.6 |
Speed at the last step(images/second) | 8696.8 | 8692.8 | 9301.6 |
steps | 56300 | 56300 | 56300 |
Accuracy @ 5 | 0.9282 | 0.9286 | 0.9285 |
horovod-4x8​
nfs | fluid (cold) | fluid (warm) | |
---|---|---|---|
Training time | 2h15m59s | 1h43m43s | 1h32m22s |
Speed at the 1000 step(images/second) | 3136 | 8889.6 | 20859.5 |
Speed at the last step(images/second) | 15024 | 20506.3 | 21329 |
steps | 14070 | 14070 | 14070 |
Accuracy @ 5 | 0.9228 | 0.9204 | 0.9243 |
Analysis​
From the test results, the Fluid acceleration effect on 1x8 has no obvious effect, but in the scenario of 4x8, the effect is very obvious. In warm data scenario, the training time can be shortened (135-92)/135 = 31%; In cold data scenario, training time can be shortened (135-103) /135 = 23%. This is because NFS bandwidth became a bottleneck under 4x8; Fluid based on Alluxio provides distributed cache data reading capability for P2P data.